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C- Balanced Delta -Delta Connection 

A balanced ∆ − ∆ system is one in which both the balanced source and balanced load are ∆-

connected as shown in Fig. 4.15. 

 

 

 

 

Assuming a positive sequence, the phase voltages for a delta-connected source are 

 

                            … (4.18) 

The line voltages are the same as the phase voltages. From Fig. 4.16, assuming there is no line 

impedances, the phase voltages of the delta connected source are equal to the voltages across the 

impedances; that is, 

                                   … (4.19) 

Hence, the phase currents are 

 

                            … (4.20) 

The line currents are obtained from the phase currents by applying KCL at nodes A, B, and C, 

as we did in the previous section: 

                  … (4.21)  

Also, as shown in the last section, each line current lags the corresponding phase current by 30° 

the magnitude 𝐼𝐿  of the line current is √3  times the magnitude 𝐼𝑃  of the phase current, 

              … (4.22) 

An alternative way of analyzing this circuit is to convert both the source and the load to their 

Y equivalents. 

Fig 4.15. ∆-∆ system. 



Example 4.3/ A balanced ∆-connected load having an impedance ( 20 − 𝑗15)Ω is connected to 

a ∆ -connected, positive-sequence generator having  𝑽𝒂𝒃 = 𝟑𝟑𝟎∠𝟎° 𝑽 Calculate the phase 

currents of the load and the line currents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D- Balanced Delta – Wye Connection 

A balanced ∆ − 𝐘 system consists of a balanced ∆-connected source feeding a balanced 𝐘 -

connected load  as shown in Fig. 4.16. 

 

 

 

 

 

Again, assuming the abcsequence, the phase voltages of a delta-connected source are 

 

                            … (4.23) 

These are also the line voltages as well as the phase voltages. We can obtain the line currents in 

many ways. One way is to apply KVL to loop aANBba in Fig. 4.16, writing 

  

 

 

 

                  … (4.24) 

But 𝐼𝑏 lags  𝐼𝑎by 120° since we assumed the abc sequence; that is, 𝐼𝑏 = 𝐼𝑎∠ − 𝟏𝟐𝟎°. Hence, 

  

                            … (4.25) 

Substituting Eq. (4.25) into Eq. (4.24) gives,  

                            … (4.26) 

and from it, we obtain the other line currents 𝐼𝑏& 𝐼𝑐. 

Fig 4.16. ∆- Y system. 



Another way to obtain the line currents is to replace the 

delta connected source with its equivalent wye-connected 

source, as shown in Fig. 4.17. 

In previous section , we found that the line-to-line voltages 

of a wye-connected source lead their corresponding phase 

voltages by 30° .Therefore, we obtain each phase voltage 

of the equivalent wye connected source by dividing the 

corresponding line voltage of the delta-connected source 

by √3 and shifting its phase by −30° .Thus, the equivalent 

wye-connected source has the phase voltages 

 

 

                   … (4.27) 

If the delta-connected source has source impedance 𝑍𝑠  per phase, the equivalent wye-connected 

source will have a source impedance of 𝑍𝑠/3  per phase. 

Once the source is transformed to wye, the circuit becomes a wye-wye system. Therefore, we can 

use the equivalent single-phase circuit shown in Fig. 4.18, from which the line current for phase 

a is 

  

                            … (4.28) 

 

 

 

Fig 4.17.  Transforming a ∆ -connected 

source to an equivalent Y-connected source. 

Fig 4.18.  The single-phase equivalent 

circuit. 



Example 4.4/ A balanced Y-connected load with a phase impedance of ( 40 + 𝑗25)Ω is supplied 

by a balanced, positive sequence ∆ -connected source with a line voltage of 210 V. Calculate the 

phase currents. Use 𝑉𝑎𝑏 as a reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.1 presents a summary of the formulas for phase currents and voltages and line currents 

and voltages for the four connections. Students are advised not to memorize the formulas but to 

understand how they are derived. The formulas can always be obtained by directly applying 

KCL and KVL to the appropriate three phase circuits. 

 

 

 

 

 

Table 4.1.  Summary of phase and line voltages/currents for balanced three-phase 

systems. 



4.3  Power in a Balanced System 

Let us now consider the power in a balanced three-phase system. We begin by examining the 

instantaneous power absorbed by the load. This requires that the analysis be done in the time 

domain. For a Y-connected load, the phase voltages are 

  

                   … (4.29) 

The phase currents lag behind their corresponding phase voltages by 𝜃 Thus, 

  

                  … (4.30) 

The total instantaneous power in the load is the sum of the instantaneous powers in the three 

phases; that is, 

  

 

                   … (4.31) 

Applying the trigonometric identity 

                   … (4.32) 

Gives 

  

 

 

                   … (4.33) 

Thus the total instantaneous power in a balanced three-phase system is constant—it does not 

change with time as the instantaneous power of each phase does. This result is true whether the 

load is Y- or ∆ -connected. 



Since the total instantaneous power is independent of time, the average power per phase 𝑃𝑝 and 

the reactive power per phase 𝑄𝑝 and the apparent power per phase 𝑆𝑝 and  complex power per 

phase 𝑆𝑝  either the ∆-connected load or the Y-connected load are 

     &     &    &  

The total average, reactive, and complex power are the sum of the corresponding powers in the 

phases: 

 

 

                   … (4.34) 

4.3.1 Economical Using of Three Phase System 

A second major advantage of three-phase systems for power distribution is that the three-phase 

system uses a lesser amount of wire than the single-phase system for the same line voltage 𝑉𝐿 and 

the same absorbed power 𝑃𝐿.  For the two-wire single-phase system in Fig. 4.19(a), 𝐼𝐿 = 𝑃𝐿/𝑉𝐿 

so the power loss in the two wires is 

 

       … (4.35) 

 

For the three-wire three-phase system in Fig. 14.19 (b), 

𝐼𝐿
′ = |𝐼𝑏| = |𝐼𝑐| = 𝑃𝐿/(√3𝑉𝐿) from Eq. (4.34). The power 

loss in the three wires is  

 

       … (4.36) 

 

  
Fig 4.19.  Comparing the power loss in 

(a) a single-phase system, and (b) a three-

phase system. 



Equations (3.35) and (3.36) show that for the same total power delivered 𝑃𝐿 and same line voltage 

𝑉𝐿 

 

                   … (4.37) 

As 𝑅 = 𝜌𝑙/𝜋𝑟2 &  𝑅′ = 𝜌𝑙/𝜋𝑟′2
, where 𝑟 and 𝑟′ are the radii of the wires. Thus, 

  

                  … (4.38) 

If the same power loss is tolerated in both systems, then 𝑟2 = 2𝑟′2
 .The ratio of material required 

is determined by the number of wires and their volumes, so 

 

  

                   … (4.39) 

Equation (4.39) shows that the single-phase system uses 33 percent more material than the three-

phase system or that the three-phase system uses only 75 percent of the material used in the 

equivalent single-phase system. In other words, considerably less material is needed to deliver 

the same power with a three-phase system than is required for a single-phase system. 

 

 

 

 

 

 

 



Example 4.5/ A three-phase motor can be regarded as a balanced Y-load. A three phase motor 

draws 5.6 kW when the line voltage is 220 V and the line current is 18.2 A. Determine the power 

factor of the motor. 

 

 

 


